Cisco OC-48/STM-16, SR1, 1310 nm, SFP, I-Temp network media converter 1000 Mbit/s

Cisco OC-48/STM-16, SR1, 1310 nm, SFP, I-Temp. Maximum data transfer rate: 1000 Mbit/s, Cabling technology: OC48/STM16. Connectivity technology: Wired. Wavelength: 1310 nm, Mean time between failures (MTBF): 3039499 h. Power consumption (typical): 1 W. Transmit power range: -10 - -3 dBmW, Interface: SFP, Connector(s): LC-LC
Manufacturer: Cisco
SKU: 10468978
Manufacturer part number: ONS-SI-2G-S1=
GTIN: 0746320992181
SFP Module The SFP transceiver module is a bidirectional device with a transmitter and receiver in the same physical package. The module interfaces to the network through a connector interface on the electrical ports and through an LC termination connector on the optical ports. Electrical interfaces and dimensions are defined in the SFF-8472 industry-standard multisource agreement (MSA). A schematic of the SFP transceiver module functional block diagram is illustrated in Figure 2. It contains three parts: the transmitter, receiver, and Electrically Erasable Programmable Read-Only Memory (EEPROM) storage chip. This block diagram is intended for information purposes only and does not illustrate design requirements. Transmitter In the transmit direction, the SFP transceiver module receives the electrical signal and transmits this data in an optical signal by using a laser driver that controls the laser diode. The optical output power is held constant by an automatic power control circuit. Receiver In the receive direction, the SFP transceiver module receives an NRZ optical signal and converts it to an electrical equivalent. The receive portion of the module will use some kind of amplifier to control the converted electrical signal. EEPROM This type of SFP transceiver is identified by the standard two-wire serial interface used in EEPROM with an I2C interface (with serial ID functions) that is part of the GBIC specifications and the SFF-8472 MSA. In addition, EEPROM offers an enhanced monitoring interface for optical transceivers as described in SFF-8472, which allows real-time access to the device to enable monitoring of received optical power, laser bias current, laser optical output power, etc.
SFP Module The SFP transceiver module is a bidirectional device with a transmitter and receiver in the same physical package. The module interfaces to the network through a connector interface on the electrical ports and through an LC termination connector on the optical ports. Electrical interfaces and dimensions are defined in the SFF-8472 industry-standard multisource agreement (MSA). A schematic of the SFP transceiver module functional block diagram is illustrated in Figure 2. It contains three parts: the transmitter, receiver, and Electrically Erasable Programmable Read-Only Memory (EEPROM) storage chip. This block diagram is intended for information purposes only and does not illustrate design requirements. Transmitter In the transmit direction, the SFP transceiver module receives the electrical signal and transmits this data in an optical signal by using a laser driver that controls the laser diode. The optical output power is held constant by an automatic power control circuit. Receiver In the receive direction, the SFP transceiver module receives an NRZ optical signal and converts it to an electrical equivalent. The receive portion of the module will use some kind of amplifier to control the converted electrical signal. EEPROM This type of SFP transceiver is identified by the standard two-wire serial interface used in EEPROM with an I2C interface (with serial ID functions) that is part of the GBIC specifications and the SFF-8472 MSA. In addition, EEPROM offers an enhanced monitoring interface for optical transceivers as described in SFF-8472, which allows real-time access to the device to enable monitoring of received optical power, laser bias current, laser optical output power, etc.
Products specifications
Attribute nameAttribute value
Transmit power range-10 - -3 dBmW
Ports & interfaces
Connectivity technologyWired
InterfaceSFP
Operational conditions
Operating temperature (T-T)-40 - 85 °C
Power
Power consumption (typical)1 W
Features
Mean time between failures (MTBF)3039499 h
Other features
Connector(s)LC-LC
Performance
Maximum data transfer rate1000 Mbit/s
Wavelength1310 nm
Cabling technologyOC48/STM16